Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 203
Filtrar
1.
Plants (Basel) ; 13(5)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38475593

RESUMO

Mars exploration will foresee the design of bioregenerative life support systems (BLSSs), in which the use/recycle of in situ resources might allow the production of food crops. However, cultivation on the poorly-fertile Mars regolith will be very challenging. To pursue this goal, we grew potato (Solanum tuberosum L.) plants on the MMS-1 Mojave Mars regolith simulant, pure (R100) and mixed with green compost at 30% (R70C30), in a pot in a cold glasshouse with fertigation. For comparison purposes, we also grew plants on a fluvial sand, pure (S100) and amended with 30% of compost (S70C30), a volcanic soil (VS) and a red soil (RS). We studied the fertility dynamics in the substrates over time and the tuber nutritional quality. We investigated nutrient bioavailability and fertility indicators in the substrates and the quality of potato tubers. Plants completed the life cycle on R100 and produced scarce but nutritious tubers, despite many critical simulant properties. The compost supply enhanced the MMS-1 chemical/physical fertility and determined a higher tuber yield of better nutritional quality. This study demonstrated that a compost-amended Mars simulant could be a proper substrate to produce food crops in BLSSs, enabling it to provide similar ecosystem services of the studied terrestrial soils.

2.
Viruses ; 16(3)2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38543788

RESUMO

COVID-19 is a highly contagious respiratory disease with a high number of lethal cases in humans, which causes the need to search for new therapeutic agents. Polysaccharides could be one of the prospective types of molecules with a large variety of biological activities, especially antiviral. The aim of this work was to study the specific antiviral activity of the drug "Immeran" on a model of a new coronavirus infection SARS-CoV-2 in hamsters. Based on the second experiment, intraperitoneal treatment with the drug according to a treatment regimen in doses of 500 and 1000 µg/kg (administration after an hour, then once a day every other day, a total of 3 administrations) was effective, reliably suppressing the replication of the virus in the lungs and, at a dose of 1000 µg/kg, prevented weight loss in animals. In all cases, the treatment stimulated the formation of virus-neutralizing antibodies to the SARS-CoV-2 virus, which suggests that the drug possesses adjuvant properties.


Assuntos
COVID-19 , SARS-CoV-2 , Cricetinae , Animais , Humanos , Mesocricetus , Estudos Prospectivos , Pulmão , Antivirais/farmacologia , Antivirais/uso terapêutico , Modelos Animais de Doenças , Anticorpos Neutralizantes
3.
Plant Physiol ; 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38488068

RESUMO

Potato (Solanum tuberosum L.) is cultivated worldwide for its underground tubers, which provide an important part of human nutrition and serve as a model system for below-ground storage organ formation. Similar to flowering, stolon-expressed FLOWERING LOCUS T-like (FT-like) protein SELF-PRUNING 6A (StSP6A) plays an instrumental role in tuberization by binding to the bZIP transcription factors StABI5-like 1 (StABL1) and StFD-like 1 (StFDL1), causing transcriptional reprogramming at the stolon subapical apices. However, the molecular mechanism regulating the widely conserved FT-bZIP interactions remains largely unexplored. Here, we identified a TCP transcription factor StAST1 (StABL1 and StSP6A-associated TCP protein 1) binding to both StSP6A and StABL1. StAST1 is specifically expressed in the vascular tissue of leaves and developing stolons. Silencing of StAST1 leads to accelerated tuberization and a shortened life cycle. Molecular dissection reveals that the interaction of StAST1 with StSP6A and StABL1 attenuates the formation of the alternative tuberigen activation complex (aTAC). We also observed StAST1 directly activates the expression of potato GA 20-oxidase gene (StGA20ox1) to regulate GA responses. These results demonstrate StAST1 functions as a tuberization repressor by regulating plant hormone levels; our findings also suggest a mechanism by which the widely conserved FT-FD genetic module is fine-tuned.

4.
Front Plant Sci ; 15: 1338062, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38504894

RESUMO

Late blight, caused by Phytophthora infestans, is one of the most serious diseases affecting potatoes (Solanum tuberosum L.). Long non-coding RNAs (lncRNAs) are transcripts with a length of more than 200 nucleotides that have no protein-coding potential. Few studies have been conducted on lncRNAs related to plant immune regulation in plants, and the molecular mechanisms involved in this regulation require further investigation. We identified and screened an lncRNA that specifically responds to P. infestans infection, namely, StlncRNA13558. P. infestans infection activates the abscisic acid (ABA) pathway, and ABA induces StlncRNA13558 to enhance potato resistance to P. infestans. StlncRNA13558 positively regulates the expression of its co-expressed PR-related gene StPRL. StPRL promotes the accumulation of reactive oxygen species and transmits a resistance response by affecting the salicylic acid hormone pathway, thereby enhancing potato resistance to P. infestans. In summary, we identified the potato late blight resistance lncRNA StlncRNA13558 and revealed its upstream and downstream regulatory relationship of StlncRNA13558. These results improve our understanding of plant-pathogen interactions' immune mechanism and elucidate the response mechanism of lncRNA-target genes regulating potato resistance to P. infestans infection.

5.
Mol Biotechnol ; 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509332

RESUMO

Potato (Solanum tuberosum L.), an important horticultural crop is a member of the family Solanaceae and is mainly grown for consumption at global level. Starch, the principal component of tubers, is one of the significant elements for food and non-food-based applications. The genes associated with biosynthesis of starch have been investigated extensively over the last few decades. However, a complete regulation pathway of constituent of amylose and amylopectin are still not deeply explored. The current in-silico study of genes related to amylose and amylopectin synthesis and their genomic organization in potato is still lacking. In the current study, the nucleotide and amino acid arrangement in genome and twenty-two genes linked to starch biosynthesis pathway in potato were analysed. The genomic structure analysis was also performed to find out the structural pattern and phylogenetic relationship of genes. The genome mining and structure analysis identified ten specific motifs and phylogenetic analysis of starch biosynthesis genes divided them into three different clades on the basis of their functioning and phylogeny. Quantitative real-time PCR (qRT-PCR) of amylose biosynthesis pathway genes in three contrast genotypes revealed the down-gene expression that leads to identify potential cultivar for functional genomic approaches. These potential lines may help to achieve higher content of resistant starch.

6.
Front Plant Sci ; 15: 1278538, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38344189

RESUMO

Introduction: Phytophthora infestans, the causative agent of late blight disease, has gained notoriety for its destructive potential, leading to substantial losses in potato yields. Although conventional systemic fungicides have been shown to be effective in controlling plant pathogens, growing environmental concerns have prompted the need for more integrated disease management approaches. Hence, in this study, the effectiveness of wild Origanum elongatum extracts as biopesticides was explored in controlling P. infestans and potentially mitigating its devastating impact in planta. Methods: The aerial parts of O. elongatum were subjected to sequential extraction using water, hexane, chloroform, and methanol. The obtained extracts were tested in vitro through the poisoned food procedure for their capacity to obstruct P. infestans growth and to defeat potato blight severity in vivo. The phyto-contents (total phenolic content (TPC) and total flavonoid content (TFC)), as well as the antioxidant activities, were spectrophotometrically determined in all extracts, and the phytoconstituents of the most active extract (methanolic extract) were profiled via high-performance liquid chromatography-photodiode array-tandem mass spectrometry (HPLC-PDA-MS/MS). Results: In vitro, the complete inhibition rate of the P. infestans was obtained using the methanolic extract at 5 mg/mL, followed by the hexane and chloroform extracts at 10 mg/mL. Interestingly, complete inhibition of the pathogen was achieved upon the application of the aqueous extract at 10 mg/mL. In vivo, the aqueous extract at 25 mg/mL reduced the P. infestans severity rate to 27.25%, while the methanolic extract at 20 mg/mL led to the lowest severity rate. Moreover, the hexane and chloroform extracts impaired the pathogen severity rate to 50% and 41% using 20 mg/mL, respectively. The TPC and TFC in the extracts were variable with high concentrations detected in the methanolic extract with 485.42 mg GAE/g and 58.24 mg QE/g, respectively. In addition, the methanolic extract showed the highest antioxidant activities, while the chloroform extract exhibited the lowest activity. Liquid chromatography (LC)-MS/MS analysis of the methanol extract revealed 56 components from diverse classes. These included organic acids, phenolic acids, flavonoids, tannins, and coumarins. Conclusion: These findings suggest that O. elongatum could be investigated as a potential source of antifungal compounds targeting different phytopathogens.

7.
Int J Mol Sci ; 25(4)2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38396922

RESUMO

Potato is an important food crop. After harvest, these tubers will undergo a period of dormancy. Brassinosteroids (BRs) are a new class of plant hormones that regulate plant growth and seed germination. In this study, 500 nM of BR was able to break the dormancy of tubers. Additionally, exogenous BR also upregulated BR signal transduction genes, except for StBIN2. StBIN2 is a negative regulator of BR, but its specific role in tuber dormancy remains unclear. Transgenic methods were used to regulate the expression level of StBIN2 in tubers. It was demonstrated that the overexpression of StBIN2 significantly prolonged tuber dormancy while silencing StBIN2 led to premature sprouting. To further investigate the effect of StBIN2 on tuber dormancy, RNA-Seq was used to analyze the differentially expressed genes in OE-StBIN2, RNAi-StBIN2, and WT tubers. The results showed that StBIN2 upregulated the expression of ABA signal transduction genes but inhibited the expression of lignin synthesis key genes. Meanwhile, it was also found that StBIN2 physically interacted with StSnRK2.2 and StCCJ9. These results indicate that StBIN2 maintains tuber dormancy by mediating ABA signal transduction and lignin synthesis. The findings of this study will help us better understand the molecular mechanisms underlying potato tuber dormancy and provide theoretical support for the development of new varieties using related genes.


Assuntos
Lignina , Solanum tuberosum , Lignina/metabolismo , Perfilação da Expressão Gênica , Reguladores de Crescimento de Plantas/metabolismo , Tubérculos , Desenvolvimento Vegetal , Solanum tuberosum/genética , Regulação da Expressão Gênica de Plantas , Dormência de Plantas/genética
8.
Plant Physiol Biochem ; 207: 108334, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38219424

RESUMO

The exponentially increasing population and the demand for food is inextricably linked. This has shifted global attention to improving crop plant traits to meet global food demands. Potato (Solanum tuberosum L.) is a major non-grain food crop that is grown all over the world. Currently, some of the major global potato research work focuses on the significance of microRNAs (miRNAs) in potato. miRNAs are a type of non-coding RNAs that regulate the gene expression of their target mRNA genes by cleavage and/or their translational inhibition. This suggests an essential role of miRNAs in a multitude of plant biological processes, including maintenance of genome integrity, plant growth, development and maturation, and initiation of responses to various stress conditions. Therefore, engineering miRNAs to generate stress-resistant varieties of potato may result in high yield and improved nutritional qualities. In this review, we discuss the potato miRNAs specifically known to play an essential role in the various stages of the potato life cycle, conferring stress-resistant characteristics, and modifying gene expression. This review highlights the significance of the miRNA machinery in plants, especially potato, encouraging further research into engineering miRNAs to boost crop yields and tolerance towards stress.


Assuntos
MicroRNAs , Solanum tuberosum , MicroRNAs/genética , MicroRNAs/metabolismo , Solanum tuberosum/metabolismo , Plantas/genética , Desenvolvimento Vegetal , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico/genética
9.
Metabolites ; 14(1)2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38276305

RESUMO

Sucrose synthase (SUS) and sucrose phosphate synthase (SPS) are essential in plant sucrose metabolism. The potato is an important crop worldwide, but systematic analyses of the StSUS and StSPS gene families in potatoes are still lacking. Ten sucrose metabolism-related genes were identified in this study. The SUSs and SPSs could each be split into three subgroups through phylogenetic analysis. StSUSIc was the most highly expressed gene in different developmental tissues. Ka/Ks analysis showed that StSUSIb and StSUSIc were subjected to more-significant homozygous selection pressure. Our cis-acting element analysis of the StSUS and StSPS promoter sequences showed four elements: defense- and stress-responsive, hormone-responsive, light-responsive, and transcription factor elements. The expression of StSUS and StSPS genes was found to be regulated by circadian rhythm. In the treatments of 1% to 5% sucrose, glucose, and fructose, the expression of StSUS and StSPS family genes was enhanced by sucrose, but inhibited at high-glucose and fructose concentrations. This study identified six StSUS and four StSPS genes and analyzed their gene structure, conserved motifs, chromosome position, promoter elements, phylogenetic tree, and tissue-specific expression patterns. Our results will motivate more research into the biological process underlying the genes of sucrose metabolism in potatoes.

10.
BMC Genomics ; 25(1): 10, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38166714

RESUMO

BACKGROUND: Plant U-box (PUB) E3 ubiquitin ligases have vital effects on various biological processes. Therefore, a comprehensive and systematic identification of the members of the U-box gene family in potato will help to understand the evolution and function of U-box E3 ubiquitin ligases in plants. RESULTS: This work identified altogether 74 PUBs in the potato (StPUBs) and examined their gene structures, chromosomal distributions, and conserved motifs. There were seventy-four StPUB genes on ten chromosomes with diverse densities. As revealed by phylogenetic analysis on PUBs within potato, Arabidopsis, tomato (Solanum lycopersicum), cabbage (Brassica oleracea), rice (Oryza sativa), and corn (Zea mays), were clustered into eight subclasses (C1-C8). According to synteny analysis, there were 40 orthologous StPUB genes to Arabidopsis, 58 to tomato, 28 to cabbage, 7 to rice, and 8 to corn. In addition, RNA-seq data downloaded from PGSC were utilized to reveal StPUBs' abiotic stress responses and tissue-specific expression in the doubled-monoploid potato (DM). Inaddition, we performed RNA-seq on the 'Atlantic' (drought-sensitive cultivar, DS) and the 'Qingshu NO.9' (drought-tolerant cultivar, DT) in early flowering, full-blooming, along with flower-falling stages to detect genes that might be involved in response to drought stress. Finally, quantitative real-time PCR (qPCR) was carried out to analyze three candidate genes for their expression levels within 100 mM NaCl- and 10% PEG 6000 (w/v)-treated potato plantlets for a 24-h period. Furthermore, we analyzed the drought tolerance of StPUB25 transgenic plants and found that overexpression of StPUB25 significantly increased peroxidase (POD) activity, reduced ROS (reactive oxygen species) and MDA (malondialdehyde) accumulation compared with wild-type (WT) plants, and enhancing drought tolerance of the transgenic plants. CONCLUSION: In this study, three candidate genes related to drought tolerance in potato were excavated, and the function of StPUB25 under drought stress was verified. These results should provide valuable information to understand the potato StPUB gene family and investigate the molecular mechanisms of StPUBs regulating potato drought tolerance.


Assuntos
Arabidopsis , Solanum tuberosum , Ubiquitina-Proteína Ligases/genética , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Resistência à Seca , Filogenia , Secas , Ubiquitinas/genética , Estresse Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo
11.
J Fungi (Basel) ; 10(1)2024 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-38248962

RESUMO

Brown leaf spot disease caused by Alternaria spp. is among the most common diseases of potato crops. Typical brown spot symptoms were observed in commercial potato-cultivation areas of northern Korea from June to August 2020-2021. In total, 68 isolates were collected, and based on sequence analysis of the internal transcribed spacer (ITS) region, the collected isolates were identified as Alternaria spp. (80.9%). Phylogenetic analysis revealed that a majority of these isolates clustered within a clade that included A. alternata. Additionally, the ITS region and rpb2 yielded the most informative sequences for the identification of A. alternata. Pathogenicity tests confirmed that the collected pathogens elicited symptoms identical to those observed in the field. In pathogenicity tests performed on seven commercial cultivars, the pathogens exhibited strong virulence in both wound and non-wound inoculations. Among the cultivars tested, Arirang-1ho, Arirang-2ho, and Golden Ball were resistant to the pathogens. Furthermore, among the fungicides tested in vitro, mancozeb and difenoconazole were found to be effective for inhibiting mycelial growth. In summary, our findings suggest that A. alternata plays a critical role in leaf disease in potato-growing regions and emphasise the necessity of continuous monitoring and management to protect against this disease in Korea.

12.
3 Biotech ; 13(12): 419, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38037658

RESUMO

Lipoxygenases (LOXs) namely 9-LOXs and 13-LOXs catalyse the oxygenation of polyunsaturated fatty acids to produce fatty acid hydroperoxides which are crucial in growth, development and stress responses in plants. Here, we isolated and characterized a 2723-bp cDNA encoding a distinct 861-aa 9-LOX form, designated StKCLX-1, using tuber total RNA from an Indian potato cultivar, Kufri Chipsona-1 through RT-PCR. A total of 17 LOX genes distributed in different chromosomes were identified and characterized in the potato genome. Multiple sequence alignment revealed highly conserved amino acids in the crucial domains, motifs and variable N-terminal regions between the LOX classes. A total of 36 LOXs from potato, tomato and Arabidopsis were used in phylogenetic analysis. A 3-D structure of StKCLX-1 was predicted by AlphaFold tool, validated through the predicted local-distance difference test (pLDDT) and Ramachandran Plot. Molecular docking predicted the nature of receptor-ligand interactions. STRING database was used to predict the protein-protein interactions. Expression patterns of the LOXs in the potato organs were examined by Expression Atlas and semi-quantitative RT-PCR. 9-LOX activity was noticed at early stages of tuberization, and significantly increased in the freshly-harvested mature tubers. This report would be useful in gaining insights into the structure-function relationships of the LOXs and corresponding multigene family-prerequisites for understanding tuber development in potato.

13.
Front Plant Sci ; 14: 1253706, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37965021

RESUMO

Because of its wide distribution, high yield potential, and short cycle, the potato has become essential for global food security. However, the complexity of tetrasomic inheritance, the high level of heterozygosity of the parents, the low multiplication rate of tubers, and the genotype-by-environment interactions impose severe challenges on tetraploid potato-breeding programs. The initial stages of selection take place in experiments with low selection accuracy for many of the quantitative traits of interest, for example, tuber yield. The goal of this study was to investigate the contribution of incorporating a family effect in the estimation of the total genotypic effect and selection of clones in the initial stage of a potato-breeding program. The evaluation included single trials (STs) and multi-environment trials (METs). A total of 1,280 clones from 67 full-sib families from the potato-breeding program at Universidade Federal de Lavras were evaluated for the traits total tuber yield and specific gravity. These clones were distributed in six evaluated trials that varied according to the heat stress level: without heat stress, moderate heat stress, and high heat stress. To verify the importance of the family effect, models with and without the family effect were compared for the analysis of ST and MET data for both traits. The models that included the family effect were better adjusted in the ST and MET data analyses for both traits, except when the family effect was not significant. Furthermore, the inclusion of the family effect increased the selective efficiency of clones in both ST and MET analyses via an increase in the accuracy of the total genotypic value. These same models also allowed the prediction of clone effects more realistically, as the variance components associated with family and clone effects within a family were not confounded. Thus, clonal selection based on the total genotypic value, combining the effects of family and clones within a family, proved to be a good alternative for potato-breeding programs that can accommodate the logistic and data tracking required in the breeding program.

14.
Plants (Basel) ; 12(22)2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-38005801

RESUMO

Pymetrozine is used on potato (S. tuberosum) and Chrysanthemum morifolium (C. morifolium) to obtain greater yield and quality. However, pesticide use carries the potential for residues to remain and be detected on harvested crops. Therefore, the aim of this study was to estimate pesticide residues in S. tuberosum and C. morifolium products that are commercially available for human consumption and to assess the associated dietary risks. For this study, a total of 340 samples (200 S. tuberosum samples and 140 C. morifolium samples) were collected randomly from supermarkets and farmer's markets. Residues of pymetrozine in S. tuberosum and C. morifolium were detected by using an established and validated QuECHERS-HPLC-MS / MS method, while a dietary risk assessment of pymetrozine in S. tuberosum and C. morifolium was performed using these data. The detection rates of pymetrozine in S. tuberosum and C. morifolium samples were 92.31% and 98.17%, respectively, with residues not more than 0.036 and 0.024 mg/kg, respectively. Based on these results, the dietary risk assessment indicated that the intake of pymetrozine residues in S. tuberosum and C. morifolium does not pose a health risk. This work improved our understanding of the potential exposure risk of pymetrozine in S. tuberosum and C. morifolium.

15.
Front Plant Sci ; 14: 1268448, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37780518

RESUMO

Ubiquitination is a specific protein degradation and reversible post-translational modification process that can be reversed by deubiquitinase (DUBs). DUBs can hydrolyze and release ubiquitin in the substrate protein so that the substrate can avoid degradation or change its activity, and it has an impact on plant growth and development, cell cycle, abiotic stress response, and other biological processes. Transcript sequences of potato varieties "DM1-3", "Atlantic" and "Cooperation-88" downloaded from Potato Genome Resources were used for genome-wide identification of the DUB gene family using Hidden Markov Models and verified in the NCBI CD-Search tool. The characteristics of DUB genes from different potato varieties were analyzed including subcellular localization, gene structural motifs, phylogenetic tree, and sequence homology. Polyethylene glycol 6000 (PEG6000) induced drought stress transcriptome analysis was performed on the "Atlantic", and differentially expressed genes were screened, with emphasis on the characterization of deubiquitinase. DUB genes have a complex gene structure, often with a large number of exons and alternative splicing. Their promoters contain abundant abiotic stress-responsive elements, such as 425 MYC, 325 ABRE, and 320 MYB. There are also a large number of orthologous genes in the DUBs of the three potato varieties, and these genes are often clustered in similar regions on the genome. We performed transcriptome sequencing of the potato under PEG-induced drought stress and analyzed it for the first time using the Atlantic as a reference genome. We identified a total of 6067 down-regulated differentially expressed genes (DEGs) and 4950 up-regulated DEGs under PEG-induced drought stress. We screened the expression of DUBs and observed that 120 DUBs were up-regulated where most of them functioned in the nucleus, and the interacting proteins of DUBs were also localized in the nucleus. We have comprehensively identified and analyzed potato DUBs, and the accurately aligned transcriptome data which will further deepen the understanding of DUBs involved in the regulation of osmotic stress.

16.
Front Plant Sci ; 14: 1210850, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37860257

RESUMO

Introduction: High levels of toxic steroidal glycoalkaloids (SGAs) in potato tubers constitute a recognized food quality problem. Tuber SGA levels vary between potato cultivars and can increase after post-harvest stresses such as wounding and light exposure. A few cultivars, e.g., 'Magnum Bonum' and 'Lenape,' have been withdrawn from commercial sales due to excessive SGA levels during some cultivation years. However, these sudden SGA increases are diffucult to predict, and their causes are not understood. To identify external and genetic factors that underlie sudden SGA increases in certain potato cultivars, we have here in a 2-year study investigated 'Magnum Bonum' and five additional table potato cultivars for their SGA levels after wounding and light exposure. Results and methods: Results showed that 'Magnum Bonum' has an unusual strong SGA response to light exposure, but not to wounding, whereas 'Bintje' displayed an opposite regulation. Levels of calystegine alkaloids were not significantly altered by treatments, implicating independent metabolic regulation of SGA and calystegine levels also under conditions of high SGA accumulation. Metabolomic and transcriptomic analyses identified a small number of key genes whose expression correlated with SGA differences between cultivars. Overexpression of two key genes in transgenic low-SGA potato cultivars increased their leaf SGA levels significantly. Discussion: The results show that a strong response to light can underlie the SGA peaks that occasionally occur in certain potato cultivars and indicate that a between-cultivar variation in the expression of single SGA key genes can account for cultivar SGA differerences. We propose that current attempts to mitigate the SGA hazard will benefit from an increased consideration of cultivar-dependent SGA responses to post-harvest conditions, particularly light exposure. The identified key SGA genes can now be used as a molecular tool in this work.

17.
Breed Sci ; 73(3): 343-348, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37840981

RESUMO

Golden cyst nematodes have threatened the cultivation of 'Toyoshiro', a major potato variety used for chip processing in Japan. Common scab is a soilborne disease that occurs in potato fields worldwide. To solve these problems, we crossed two US varieties and selected a clone that showed a slightly higher marketable yield and a significantly higher yield rate, compared with 'Toyoshiro', and had good chip processing quality, extreme resistance to cyst nematodes, and moderately high resistance to common scab. This clone was named 'Poroshiri'; it is the first variety released from the Calbee Potato breeding program.

18.
Molecules ; 28(17)2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37687048

RESUMO

The complete mechanism behind starch regulation has not been fully characterized. However, significant progress can be achieved through proteomic approaches. In this work, we aimed to characterize the starch-interacting proteins in potato (Solanum tuberosum L. cv. Desiree) tubers under variable circumstances. Starch-interacting proteins were extracted from developing tubers of wild type and transgenic lines containing antisense inhibition of glucan phosphorylases. Further, proteins were separated by SDS-PAGE and characterized through mass spectrometry. Additionally, starch-interacting proteins were analyzed in potato tubers stored at different temperatures. Most of the proteins strongly interacting with the potato starch granules corresponded to proteins involved in starch metabolism. GWD and PWD, two dikinases associated with starch degradation, were consistently found bound to the starch granules. This indicates that their activity is not only restricted to degradation but is also essential during storage starch synthesis. We confirmed the presence of protease inhibitors interacting with the potato starch surface as previously revealed by other authors. Starch interacting protein profiles of transgenic tubers appeared differently from wild type when tubers were stored under different temperatures, indicating a differential expression in response to changing environmental conditions.


Assuntos
Solanum tuberosum , Animais , Solanum tuberosum/genética , Proteômica , Animais Geneticamente Modificados , Eletroforese em Gel de Poliacrilamida , Amido
19.
Heliyon ; 9(8): e19061, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37636361

RESUMO

Metallic nanoparticle biosynthesis is thought to offer opportunities for a wide range of biological uses. The green process of turning biological waste into utilizable products gaining attention due to its economical and eco-friendly approach in recent years. This study reported the ability of Solanum tuberosum (ST) peel extract to the green synthesis of non-toxic, stable, small-sized silver nanoparticles without any toxic reducing agent utilizing the phytochemical components present in its structure. UV-visible spectroscopy, X-ray diffraction analysis, Fourier transform infrared spectroscopy, flourier scanning electron microscopy, atomic force microscopy, transmission electron microscopy, and energy dispersive analysis X-ray confirmed the biosynthesis and characterization of silver nanoparticles. Also, dynamic light scattering and thermogravimetric analyses showed stable synthesized nanoparticles. The antibacterial activity of the biosynthesized silver nanoparticles was evaluated against four different bacterial strains, Escherichia coli (E. coli), Pseudomonas aeruginosa (P. aeruginosa), Staphylococcus aureus (S. aureus) Bacillus subtilis (B. subtilis), and a yeast, Candida albicans (C. albicans) using the minimum inhibitory concentration technique. The cytotoxic activities were determined against Human dermal fibroblast (HDF), glioblastoma (U118), colorectal adenocarcinoma (CaCo-2), and human ovarian (Skov-3) cell lines cancer cells using MTT test. The nanoparticle capping agents that could be involved in the reduction of silver ions to Ag NPs and their stabilization was identified using FTIR. Nanoparticles were spherical in shape and had a size ranging from 3.91 to 27.07 nm, showed crystalline nature, good stability (-31.3 mV), and the presence of capping agents. ST-Ag NPs significantly decreased the growth of bacterial strains after treatment. The in vitro analysis showed that the ST-Ag NPs demonstrated dose-dependent cytotoxicity against cell lines. Based on the data, it is feasible to infer that biogenic Ag NPs were capped with functional groups and demonstrated considerable potential as antibacterial and anticancer agents for biomedical and industrial applications.

20.
Microorganisms ; 11(8)2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37630553

RESUMO

Phytophthora infestans is, worldwide, one of the main causal agents of epiphytotics in potato plantings. Prevention strategies demand integrated pest management, including modeling of beneficial microbiomes of agroecosystems combining microorganisms and natural products. Chitooligosaccharides and their derivatives have great potential to be used by agrotechnology due to their ability to elicit plant immune reactions. The effect of combining Bacillus subtilis 26D and 11VM and conjugates of chitin with hydroxycinnamates on late blight pathogenesis was evaluated. Mechanisms for increasing the resistance of potato plants to Phytophthora infestans were associated with the activation of the antioxidant system of plants and an increase in the level of gene transcripts that encode PR proteins: basic protective protein (PR-1), thaumatin-like protein (PR-5), protease inhibitor (PR-6), and peroxidase (PR-9). The revealed activation of the expression of marker genes of systemic acquired resistance and induced systemic resistance under the influence of the combined treatment of plants with B. subtilis and conjugates of chitin with hydroxycinnamates indicates that, in this case, the development of protective reactions in potato plants to late blight proceeds synergistically, where B. subtilis primes protective genes, and chitosan composites act as a trigger for their expression.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...